A. 4^{x+1} - 6. 2^{x+1} = -8 B. 2^{2x+1} - 4.2^{x+2} ≤ 0
Matematika
iqbale7
Pertanyaan
A. 4^{x+1} - 6. 2^{x+1} = -8
B. 2^{2x+1} - 4.2^{x+2} ≤ 0
B. 2^{2x+1} - 4.2^{x+2} ≤ 0
1 Jawaban
-
1. Jawaban rahmalfiana13
a. 4^(x+1) - 6.2^(x+1) = -8
2^(2x+2) - 6. 2^x. 2 = -8
2^2x. 2^2 - 12. 2^x= -8
4. 2^2x -12. 2^x =-8
misal 2^x = a
maka
4a^2 - 12a + 8 = 0
a = 1 atau a = 2
maka
2^x =1 -> x= 0
2^x = 2 -> x= 1
b. 2^{2x+1} - 4.2^{x+2} ≤ 0
2^2x. 2 - 4. 2^x. 2^2 ≤ 0
2^2x. 2 - 16 2^x ≤ 0
misal 2^x= a
maka
2a^2 -16a ≤ 0
2a(a - 8) ≤ 0
a ≤ 0 atau a-8 ≤ 0
a≤8 maka
2^x ≤ 8
x ≤ 3